CHIMICA & INDUSTRIA

DOI: http://dx.medra.org/10.17374/CI.2022.104.2.62

Andrea Brigliadori^{a,b}, Magda Blosi^a, Ilaria Zanoni^a, Simona Ortelli^a, Stefania Albonetti^b, Anna Luisa Costa^a ^aIstituto di Scienza e Tecnologia dei Materiali Ceramici, CNR-ISTEC Faenza (RA) ^bDipartimento di Chimica Industriale "Toso Montanari" Alma Mater Studiorum - Università di Bologna andrea.brigliadori95@gmail.com

NANO-BIO MATERIALI IBRIDI PER IL RISANAMENTO ACQUE

Lo studio presenta una nuova classe di bio-nano catalizzatori ibridi impiegabili nei trattamenti terziari di acque reflue. Sono state combinate le capacità di biosorbimento della microalga Chlorella vulgaris e le proprietà fotocatalitiche di nanoparticelle di TiO₂ al fine di investigare nuovi effetti sinergici che possano spingere le tecnologie di risanamento acque verso un bilancio costi-benefici più conveniente.

Introduzione

62

Fra i punti chiave dell'Agenda 2030 per lo sviluppo sostenibile vi è l'approvvigionamento di risorse idriche [1]. Attualmente, gran parte dell'acqua di consumo viene scaricata come refluo e il settore manifatturiero è responsabile del rilascio di una grande quantità e varietà di inquinanti, fra i quali metalli pesanti, coloranti e sottoprodotti chimici [2]. Di recente, stanno emergendo nuove tecnologie di biorisanamento. Le microalghe, oltre al bioaccumulo espletato attraverso il metabolismo, possono adsorbire cationi sulla parete cellulare grazie alla presenza di gruppi funzionali carichi negativamente [3]. Queste interazioni elettrostatiche, possono essere sfruttate anche attraverso biomassa non-vivente, che è più facile da trattare ed è disponibile come scarto. Chlorella vulgaris (C. vulgaris) rappresenta un ottimo candidato poiché possiede elevata affinità per metalli pesanti e coloranti, inoltre può crescere nella maggior parte delle acque reflue [4]. Parallelamente, negli ultimi decenni, le proprietà fotocatalitiche di nanofasi di TiO₂ sono state impiegate in diversi settori, fra i quali, processi di ossidazione avanzata di inquinanti organici persistenti [5]. Di seguito si riporta il design di un bio-nano catalizzatore ottenuto dall'accoppiamento di C. vulgaris e TiO, NPs in grado di sequestrare metalli pesanti e fotodegradare inquinanti organici. La possibilità di combinare le proprietà biosorbenti delle microalghe con nanoparticelle inorganiche fotocatalitiche rappresenta una nuova sfida nell'ottica di sviluppare un materiale

multifunzionale applicabile nel trattamento acque **[6]**. Sui materiali ibridi ottenuti è stato osservato un effetto sinergico in grado di enfatizzare la capacità di biosorbimento di *C. vulgaris* quando accoppiata con TiO_2 , effetto che apre nuove prospettive al biorisanamento con alghe e, in generale, ai trattamenti acque.

Materiali e metodi

La matrice inorganica è composta da nanofasi di TiO_2 (Aeroxide[®]P25, Evonik) e di SiO_2 (Ludox HS-40, Grace Davison). La controparte organica è la microalga *C. vulgaris* (Micoperi Blue Growth) in sospensione 0,18 g L⁻¹.

Sono stati studiati diversi rapporti in peso TiO_2/C . *vulgaris* al fine di valutare l'effetto reciproco di TiO_2 sul biosorbimento e di *C. vulgaris* sull'attività fotocatalitica. Inoltre, è stata variata la composizione della fase inorganica introducendo SiO_2 NPs in rapporto $\text{TiO}_2/\text{SiO}_2$ 1:3 in peso. La composizione

Campione	TiO ₂ (%wt)	<i>C. vulgaris</i> (%wt)	SiO ₂ (%wt)	
CV	-	100	-	
TiO ₂	100	-	-	
TiSi	25	-	75	
TC-0,01	99,99	0,01	-	
TC-0,06	99,94	0,06	-	
TC-0,6	99,4	0,6	-	
STC-0,01	25	0,01	74,99	
STC-0,06	24,98	0,06	74,96	
Tab. 1 - Composizione dei campioni				

Ad Andrea Brigliadori è stato assegnato il Premio Miglior Tesi di Laurea Magistrale nel campo della Chimica Industriale 2021 dalla Divisione di Chimica Industriale della SCI.

Campione	<i>C. vulgaris</i> (%wt)	рН	Potenziale Z (mV)	IEP	φ idrodinamico (nm)
TiO ₂	-	5,6	+29 ± 1	6,7	480 ± 40
CV	100	6,1	-30 ± 1	1,5	3690 ± 60
TC-0,01	0.01	6,0	-27 ± 1	3,6	6000 ± 100
TC-0,06	0.06	6,0	-25 ± 1	1,8	4500 ± 200
STC-0,01	0.01	5,8	-37 ± 1	1,8	270 ± 1
STC-0,06	0.06	5,6	-35 ± 1	1,8	281 ± 6

Tab. 2 - Caratterizzazione colloidale delle sospensioni

dei campioni è riportata in Tab. 1. La miscelazione è stata ottimizzata a livello colloidale tramite eterocoagulazione in sospensione acquosa. In seguito, il processo di *Spray Freeze Drying* (SFD), mediante nebulizzazione in azoto liquido e successiva liofilizzazione, ha permesso di ottenere polveri multicomponente, micrometriche e molto porose, senza danneggiare la biomassa termolabile e preservando l'elevata reattività dei granuli **[7]**.

I test di biosorbimento di Cu²⁺ sono stati svolti disperdendo 2,5 g L⁻¹ di campione granulato in una soluzione acquosa di CuCl₂ 10 mg mL⁻¹ a 25 °C e pH 4,5. Dopo 30 min di contatto il solido è stato separato per ultrafiltrazione e il Cu²⁺ in soluzione è stato quantificato mediante analisi ICP-OES. Facendo prove a diversa concentrazione di Cu²⁺, è stato possibile modellare l'adsorbimento attraverso le isoterme di Langmuir e Freundlich. Mentre, facendo prove a diversi tempi di contatto, si è osservato che la cinetica di biosorbimento di Cu²⁺ su *C. vulgaris* segue una legge di pseudo-secondo-ordine.

l test di fotodegradazione del colorante organico Rodamina B (RhB) sono stati svolti disperdendo 0,1 g L⁻¹ di catalizzatore in una soluzione acquosa di RhB 7 mg L⁻¹. La sospensione mantenuta a 25 °C è stata irraggiata per 1 h (50 W m⁻², λ_{media} =350 nm). La concentrazione di RhB è stata monitorata nel tempo per via spettrofotometrica e le curve di fotodegradazione sono state interpolate secondo legge cinetica di pseudo-primo-ordine.

Risultati e discussione

Al fine di investigare le interazioni di superficie durante l'eterocoagulazione tra *C. vulgaris* e TiO_2 , è stato studiato il comportamento colloidale delle due fasi. Come evidenziato in Tab. 2, a pH naturale TiO_2 e *C. vulgaris* hanno potenziale Z di carica opposta (rispettivamente +29 e -30 mV), caratteristica ottimale per l'eterocoagulazione. Nei campioni ibridi, anche un contenuto estremamente limitato di biomassa (0,06 %wt) sembra influenzare

significativamente le caratteristiche del sistema, che mostra potenziale Z -25 mV e punto isoelettrico (IEP) a pH 1,8. Inoltre, la curva potenziale Z/pH risulta sovrapponibile a quella dell'alga (Fig. 1), in linea con un fenomeno di *self-assembly* guidato dalle interazioni elettrostatiche tra TiO₂ e biomassa. L'aggiunta di SiO₂ colloidale, finalizzata ad incrementare le prestazioni fotocatalitiche di TiO₂, determina curve di titolazione molto simili a quelle dei sistemi bicomponente (TiO₂/C. vulgaris).

La granulazione tramite SFD permette di ottenere polveri più maneggevoli e applicabili in un impianto di trattamento acque. Tramite microscopia elettronica è stato possibile osservare la porosità della nanostruttura dei microgranuli e come la presenza di SiO₂ ne migliori la compattezza (Fig. 2). Le dimensioni ottenute variano tra 1-100 µm con una popolazione più numerosa tra 20-30 µm. La struttura dei granuli è costituita dalla matrice inorganica, immerse nella quale si osservano le cellule di *C. vulgaris*, presenza confermata dalle mappe EDX. La superficie specifica (SSA) dei granuli mostra valori intorno

63

Fig. 2 - Immagini FE-SEM dei granuli: a) STC-0,01; b) STC_0,06, con ingrandimento sulla nanostruttura; c) TC-0,06, cellule di alga immerse nella matrice di TiO₂

a 60 m²/g per TiO₂ e, come atteso, molto più elevati per SiO₂ (\approx 200 m²/g), la combinazione dei due ossidi porta ad un incremento di SSA (\approx 220 m²/g). L'aggiunta di *C. vulgaris* riduce SSA in modo progressivo al crescere del contenuto di alga, probabilmente perché interagendo con la fase inorganica maschera la nanoporosità.

Capacità di biosorbimento

Il biosorbimento è influenzato da molti fattori, fra i quali temperatura, pH, tempo di contatto e quantità di adsorbente **[8]**. I risultati evidenziano che, nelle condizioni adottate, solo l'alga è attiva nella rimozione del Cu²⁺ (103 mg g⁻¹), mentre le fasi inorganiche hanno capacità adsorbenti trascurabili (\approx 0,3 mg g⁻¹). I dati (Tab. 3) mostrano un forte effetto sinergico, probabilmente indotto dalla dispersione delle cellule sulla matrice inorganica, dimostrata dai profili di potenziale Z e dalle immagini FE-SEM. Infatti, i risultati di adsorbimento forniti dai campioni ibridi sono significativamente superiori rispetto ai valori previsti dalla media ponderale degli adsorbimenti dei singoli componenti. Ad esempio, il campione TC-0,06 adsorbe 3,00 mg g⁻¹ di Cu²⁺ rispetto ad un valore teorico prebiomassa presente, si è osservato l'incremento di un ordine di grandezza rispetto all'alga in sospensione (4460 mg g⁻¹ contro 103 mg g⁻¹). Si ipotizza che tale effetto di dispersione sia strettamente legato alle interazioni superficiali stabilite tra alga e fase inorganica. È indicativo notare come la capacità di biosorbimento non è proporzionale al contenuto di alga presente ma anzi quantità minori di alga (campione TC-0,01), evidentemente meglio dispersa all'interno della matrice inorganica, risultano più efficaci, come se venissero esposti più siti attivi per l'interazione con i metalli adsorbiti. La presenza di SiO₂ nei campioni non sembra alterare l'effetto sinergico osservato e conferma l'incrementata efficienza di biosorbimento dell'alga una volta inglobata nel granulato.

Attività fotocatalitica

 TiO_2 garantisce il 99% di conversione di RhB con una costante cinetica calcolata a 30 minuti k=8,70 min⁻¹. La biomassa non presenta attività fotocatalitica e la sua presenza nei campioni ibridi TiO₂/C. *vulgaris*, in accordo con i dati di SSA, rallenta la velocità di degradazione, come confermato dalle costanti cinetiche, ridotte in maniera proporzionale

visto dalla composizione di 0,39 mg g⁻¹. Infatti, calcolando la capacità specifica della sola alga una volta inglobata nel granulato ibrido, ottenuta normalizzando l'adsorbimento per la quantità di

64

Campione	Composizione	Biosorbimento <i>C. vulgaris</i> ª (mg _{cu} ²+/g _{c. vulgaris})	Adsorbimento granuli (mg _{Cu} ²⁺ /g _{campione})	Adsorbimento teorico ^b (mg _{Cu} ²⁺ /g _{campione})	
TC-0,01 TC-0,06 TC-0,6	TiO ₂ /CV TiO ₂ /CV TiO ₂ /CV	8650 4460 553	1,36 3,00 3,72	0,34 0,39 1,04	
STC-0,01 STC-0,06	SiO ₂ /TiO ₂ /CV SiO ₂ /TiO ₂ /CV	7960 4050	1,39 2,86	0,44 0,49	
^a Adsorbimento normalizzato sul contenuto di <i>C. vulgaris</i> , sottraendo il contributo della fase inorganica ^b Adsorbimento teorico calcolato come media ponderale dalla composizione					
Tab. 3 - Misure di adsorbimento di Cu ²⁺					

Campione	Composizione	k × 10 ⁻² (min ⁻¹)	Conversione 60 min (%)
TiO ₂	TiO ₂	8,70	99
TiSi	TiO ₂ /SiO ₂	9,45	100
TC-0,01	TiO ₂ /CV	5,02	98
TC-0,06	TiO ₂ /CV	2,44	92
TC-0,6	TiO ₂ /CV	2,50	88
STC-0,01	SiO ₂ /TiO ₂ /CV	11,22	100
STC-0,06	SiO ₂ /TiO ₂ /CV	10,67	100

^a Adsorbimento normalizzato sul contenuto di C. vulgaris, sottraendo il contributo della fase inorganica

^b Adsorbimento teorico calcolato come media ponderale dalla composizione

Tab. 4 - Risultati fotocatalitici (k calcolata a 30 min)

alla quantità di biomassa presente (Tab. 4). L'alga non interviene spegnendo i radicali o modificando il band gap (per tutte le polveri è risultato $\approx 3,2$ eV), piuttosto è probabile che la sua presenza mascheri parte della superficie esposta alla radiazione UV, rallentando, ma non impedendo le reazioni di fotodegradazione. A conferma degli studi precedenti [9], l'accoppiamento TiO₂/SiO₂ migliora le prestazioni fotocatalitiche, portando il valore di k a 9,45 min⁻¹, superiore alla sola TiO₂. I campioni ibridi a tre componenti TiO₂/SiO₂/CV, beneficiano dell'introduzione di SiO₂ e, nonostante la presenza di biomassa, raggiungono costanti cinetiche e conversioni comparabili al campione TiSi. Concludendo, STC-0,06 risulta essere il campione più promettente in grado di assicurare un'ottima attività fotocatalitica accoppiata alla capacità biosorbente di C. vulgaris.

Conclusioni

Lo studio è stato finalizzato allo sviluppo di un materiale ibrido (organico/inorganico) impiegabile nel trattamento terziario di reflui acquosi industriali, facilmente maneggiabile, in grado di abbattere il contenuto di metalli pesanti e inquinanti organici. A tale scopo, è stato progettato un sistema che combina le proprietà fotocatalitiche TiO₂ NPs con la capacità di biosorbimento della microalga *C. vulgaris*. Le caratterizzazioni eseguite, insieme ai test funzionali, hanno evidenziato una buona interazione tra alga e matrice inorganica. L'efficace dispersione dell'alga sulla superficie di TiO₂ induce un effetto sinergico positivo. Infatti, si incrementa la superficie cellulare esposta migliorando notevolmente l'efficienza di *C. vulgaris* nel biosorbimento di metalli pesanti. Di contro, l'effetto schermante dell'alga ha determinato una diminuzione delle prestazioni fotocatalitiche, che però è stata compensata dall'aggiunta di silice nanometrica. Infatti, i campioni a tre componenti $(TiO_2/SiO_2/C. vulgaris)$ sono risultati ottimali, ossia in grado di mantenere il tenore delle *performance* fotocatalitiche di TiO₂ accoppiate alla capacità biosorbente di *C. vulgaris*, a sua volta massimizzata dalla sua dispersione nella fase inorganica. Questa soluzione, che sfrutta biomassa non vivente in un sistema bifunzionale e sinergico, apre la strada a nuove tecnologie più sostenibili per il trattamento acque.

BIBLIOGRAFIA

- [1] T. Shaw, L. Mahrenbach *et al.*, The Palgrave Handbook of Contemporary International Political Economy, Palgrave Macmillani, 2019, 377.
- [2] I.M. Banat, P. Nigam *et al., Biosource Technology*, 1996, **58**(3), 217.
- [3] B. Volesky, Water Research, 2007, 41(18), 4017.
- [4] H. Znad, A.M.D. Al Ketife *et al., Ecological Engineering*, 2018, **110**, 1.
- [5] A. Lolli, M. Blosi *et al., Catalysis Today*, 2019, 334, 193.
- [6] M. Blosi, A. Brigliadori et al., Journal of Environmental Management, 2022, 304, 114187.
- [7] S.P. Ishwarya, C. Anandharamakrishnan, A.G.F. Stapley, *Trends in Food Science & Technology*, 2015, **41**(2), 161.
- [8] K.S. Kumar, H. Dahms et al., Ecotoxicology and Environmental Safety, 2015, **113**, 329.
- [9] S. Ortelli, M. Blosi et al., Journal of Photochemistry and Photobiology A: Chemistry, 2014, 292, 26.

Nano-Bio Hybrid Materials for Wastewater Remediation

A novel class of bio-nano hybrid catalyst suitable for downstream wastewater treatment was developed. The biosorption capacities of *Chlorella vulgaris* microalgae and the photocatalytic properties of TiO₂ nanoparticles have been combined in order to investigate new synergistic effects that may push water purification technologies towards a more promising cost-effective balance.

65